Czy wprowadzanie innowacji w firmie musi wiązać się z dużymi kosztami? Nie, jeśli zapewnimy sobie wsparcie silnego zespołu, zastosujemy zwinną metodykę pracy i dobrze określimy problem, który chcemy rozwiązać. W tym artykule opowiem o tym, jak razem z kilkuosobowym zespołem R&D zaproponowaliśmy rozwiązanie problemu, który potencjalnie może kilkukrotnie zmniejszyć u naszego Klienta nakłady związane z naprawą usterek.
Niedawno miałam przyjemność wspólnie z zespołem zmierzyć się w praktyce z wyzwaniem, w ramach którego udało nam się znaleźć optymalną metodę analizy danych przestrzennych, które od jakiegoś czasu zbierał nasz klient – jedna z największych w Polsce firm z branży ciepłowniczej.
Zaczęliśmy od małej próbki, projektu typu Proof of Concept, w ramach którego mieliśmy sprawdzić, czy uda nam się dzięki automatyzacji procesu wesprzeć ekspertów w wykrywaniu na podstawie zdjęć termicznych drobnych usterek, niewidocznych na pierwszy rzut oka.
To doskonały przykład na to, że innowacja nie musi wiązać się z czasochłonną i kosztowną reorganizacją całej firmy. Można zacząć od prostej optymalizacji, lub automatyzacji prostych czynności, dzięki którym można odciążyć zespół.
W przypadku naszego Klienta proces, z którym mieliśmy do czynienia był jednym z tych, którego unowocześnienie miało bardzo dużą wartość biznesową. Stąd pomysł na zautomatyzowanie procesu wykrywania usterek poprzez wykorzystanie algorytmów sztucznej inteligencji.
Drobne usterki generują duże straty ciepła, a co za tym idzie wysokie koszty ich obsługi. Do tej pory wykrywanie usterek sieci odbywało się na dwa sposoby:
W praktyce analiza polegała na przeglądaniu przez eksperta wszystkich zdjęć zrobionych z drona w celu wykrycia anomalii cieplnych. Proces ten trwał miesiącami, co wpływało również na długi czas potrzebny do wykrycia awarii.
Naszym zadaniem było częściowe zautomatyzowanie tego procesu, czyli wytypowanie miejsc z potencjalnymi usterkami, które ekspert zatwierdzi lub odrzuci.
W ramach realizowanego projektu udało nam się:
Jeśli chcesz dowiedzieć się:
pobierz pełną wersję case study poniżej!
Możesz też umówić się na rozmowę z jednym z naszych specjalistów i porozmawiać o tym projekcie oraz poradzić się w kwestii wdrożenia rozwiązań AI w swojej firmie.
Katarzyna Roszczewska, Data Scientist w Isolution